Mathematical Topics Between Classical and Quantum Mechanics by Nicholas P. Landsman

Posted by

By Nicholas P. Landsman

This monograph attracts on traditions: the algebraic formula of quantum mechanics and quantum box concept, and the geometric concept of classical mechanics. those are mixed in a unified remedy of the speculation of Poisson algebras of observables and natural kingdom areas with a transition likelihood. the speculation of quantization and the classical restrict is mentioned from this attitude. A prototype of quantization comes from the analogy among the C*- algebra of a Lie groupoid and the Poisson algebra of the corresponding Lie algebroid. The parallel among relief of symplectic manifolds in classical mechanics and brought about representations of teams and C*- algebras in quantum mechanics performs an both vital function. Examples from physics contain restricted quantization, curved areas, magnetic monopoles, gauge theories, massless debris, and $theta$- vacua. The publication could be available to mathematicians with a few previous wisdom of classical and quantum! mechanics, to mathematical physicists and to theoretical physicists who've a few history in useful research.

Show description

Read Online or Download Mathematical Topics Between Classical and Quantum Mechanics PDF

Similar quantum theory books

Atomic structure

Professor E. U. Condon's the speculation of Atomic Spectra used to be the 1st entire e-book at the electron constitution of atoms, and has turn into a world-renowned vintage. initially released in 1980, Atomic constitution used to be the past due Professor Condon's ultimate contribution to the literature of this box. accomplished through his colleague and previous scholar Halis Odabşi, this e-book was once one of many first built-in bills of the topic to incorporate such advancements as crew thought thoughts and Racah tools.

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, Third Edition

This can be the 3rd, considerably multiplied variation of the great textbook released in 1990 at the thought and functions of direction integrals. it's the first e-book to explicitly clear up direction integrals of a wide selection of nontrivial quantum-mechanical structures, specifically the hydrogen atom. The recommendations became attainable via significant advances.

Quantum Field Theory I: Foundations and Abelian and Non-Abelian Gauge Theories

This textbook covers a extensive spectrum of advancements in QFT, emphasizing these elements which are now good consolidated and for which passable theoretical descriptions were supplied. The publication is exclusive in that it deals a brand new method of the topic and explores many themes basically touched upon, if coated in any respect, in normal reference works.

Extra resources for Mathematical Topics Between Classical and Quantum Mechanics

Example text

Der Spinraum HS = 1|2 ist für diese Teilchen zweidimensional. Die Spinoperatoren werden demnach durch 2 × 2-Matrizen dargestellt. Wir hatten diese Matrizen bereits am Schluß von Abschn. 163) . 1 0 Für den Spinoperator S schreibt man bisweilen auch: h¯ S = σ ; σ ≡ (σx , σy , σz ) . 164) 2 Die Komponenten des Vektoroperators σ sind die Paulischen Spinmatrizen: σx = 0 1 1 0 σy = ; 0 −i i 0 ; σz = 1 0 0 −1 . 165) Für diese beweist man leicht die folgenden Eigenschaften: σx2 = σy2 = σz2 = 12 , σx , σy + = σy , σz + = [σz , σx ]+ = 0 .

L + m imϕ m h¯ e Pl (cos ϑ) . 96) ausgenutzt. 7 wird die Rekursionsformel |l m = (l − m)! (l + m)! 118) bewiesen. Nach Multiplikation mit dem bra-Zustand ϑϕ| liefert diese Gleichung den entsprechenden Zusammenhang zwischen Ylm (ϑ, ϕ) und Yl − l (ϑ, ϕ). Die beiden letzten Relationen lassen sich dann zu Ylm (ϑ, ϕ) = (2l + 1) (l − m)! imϕ m e Pl (cos ϑ) 4π (l + m)! zusammenfassen. 103) überein. Die Kugelflächenfunktionen sind also in der Tat die gemeinsamen Eigenfunktionen der Bahndrehimpulsoperatoren L2 und Lz .

101) und 2π dϕ ei(m − m )ϕ = 2π δmm 0 ist das natürlich kein Problem mehr: Ylm (ϑ, ϕ) = 2l + 1 (l − m)! m P (cos ϑ) eimϕ . 4π (l + m)! 95) schließt man leicht auf die Symmetrierelation: ∗ (ϑ, ϕ) . 104) Eigenfunktionen der Bahndrehimpulse L2 und Lz sind also die aus der mathematischen Physik wohlbekannten Kugelflächenfunktionen, von denen man weiß, daß sie ein vollständiges System auf der Einheitskugel darstellen: ∞ +l l = 0 m = −l ∗ Ylm (ϑ , ϕ ) Ylm (ϑ, ϕ) = δ(ϕ − ϕ ) δ(cos ϑ − cos ϑ ) . 105) 30 5.

Download PDF sample

Rated 4.06 of 5 – based on 13 votes